Гигабит в секунду. Мегабит в секунду Насколько это много

Если вас интересует, сколько мегабайт в одном гигабайте, посмотрите таблицу ниже. Далее обсудим, как формируются эти единицы измерения, и по какому принципу необходимо переводить конвертацию.

Информация представляет собой данные в различных формах, которые могут восприниматься людьми или специальными устройствами как отражение материального мира, которое возникает в процессе коммуникации. Для многих будет странным, что информацию можно измерить. Действительно это так и попытаемся разобраться чем биты отличаются от байтов и что вообще к чему.

Первое, о чем надо сказать, что в большинстве своем люди используют десятичную систему исчисления, которая привычна еще со школы. Но в случае с информацией будет использоваться двоичная система, которую представлена в виде 0 и 1. Чаще всего данный механизм используется именно в работе с компьютерной техникой, как правило, речь идет об объеме винчестеров или оперативной памяти.

Почему реальная и заявленная емкость жестких дисков различается?

Многие производители винчестеров часто используют эту путаницу. Заявленная емкость винчестера, который приобрел пользователь, скажем, 500 гигабайт. Но на деле, когда его уже установили и подготовили к работе, оказывается, что его общий объем колеблется в диапазоне 450-460 гигабайт.

А вся хитрость в том, что, как упоминалось в начале статьи, объем оперативной памяти, как и всех остальных ее типов используют двоичную систему расчета. А производители используют десятичную. Это и дает им возможность якобы «увеличивать» памяти, где-то на 10 процентов. Хотя на самом деле покупателей просто вводят в заблуждение.

Поговорим о системах исчисления

Самой маленькой единицей информации будет бит, который представляет собой количество информации, содержащейся в сообщении, вдвое уменьшающих неопределенность знаний о каком-либо предмете. За ним идет байт, который считают основной единицей измерения. Кстати, тут следует отметить, что в битах измеряется скорость передачи информации. Речь идет о килобитах, мегабитах и так далее. Многие, кстати, путают мегабиты и мегабайты. Вопреки, распространенному мнению, это абсолютно разные понятия и значения. Скорость будет измеряться именно в битах, переданных за секунду, но никак не в байтах.

Двоичная система исчисления, как уже писалось выше, представлена в виде нулей и единиц. Частица информации является битом и может принять значение либо нуля, либо единицы и никак иначе. Именно это и будет бит. Байт, снова-таки, как упоминалось, будет состоять из восьми бит, если говорить именно о двоичной системе исчисления. Причем каждый будет писаться как 2 в определенной степени от 0 до 7. Если попытаться показать проще, то выглядеть это будет, как: 11101001.

Это наглядный пример 256 комбинаций, которые и закодированы в байте. Но для пользователей это трудно, ведь они привыкли видеть все через призму десятичной системы исчисления. Значит переведем это, для чего потребуется просто прибавить все степени двойки там, где у нас есть единицы. Для этого нам требуется взять 2 в степени 0 + 2 в степени 3 + 2 в степени 5 + 2 в степени 6 + 2 в степени 7.

Еще одним важным моментом является полубайт или как его называют ниббл. Это половина байта, то есть 4 бита. Как правило, в нем можно закодировать любое число от 0 до 15.

Нестыковки в битах и байтах

Как упоминалось выше скорость передачи информации измеряется в битах. Но в последнее время измерение даже в известных программах осуществляется в байтах. Хоть это и не совсем верно, но все-таки такое возможно. Перевод в этом случае будет довольно простым:

  • 1 байт = 8 бит;
  • 1 килобайт = 8 килобит;
  • 1 мегабайт = 8 мегабит.

Если же пользователю нужно сделать обратный перевод, то просто необходимо нужное число поделить на 8.

Другая проблема будет в том, что самой системе байтов существует ряд нестыковок, которые вызывают у пользователей проблемы с переводы в мега, гига, терабайты и так далее. Дело здесь в том, что с самого начала появления для того, чтобы обозначить единицы информации, которые больше байтов, применяются термины, которые относятся к десятичной системе, а не к двоичной. Например, приставка «тера» обозначает умножение на 10 в 12 степени, гига — на 10 в 9, мега — на 10 в 6 и так далее.

Именно по этой причине путаница и возникает. Логично было бы предположить, что 1 килобайт равен 1000 байт, но это не так. В нем будет 1024 байта.

В общем, как видите, определенные сложности существуют, но если в них разобраться, то довольно быстро станет понятно, что ничего трудного в этом нет.

передачи информации , используемая на физическом уровне сетевой модели OSI или TCP/IP .

На более высоких уровнях сетевых моделей, как правило, используется более крупная единица - байт в секунду (Б/c или Bps , от англ. b ytes p er s econd ) равная 8 бит/c.

В телекоммуникациях

В телекоммуникациях приняты десятичные приставки, например, 1 килобит = 1000 бит. Аналогично 1 килобайт = 1000 байт, хотя в телекоммуникациях не принято измерять скорость в байт/с.

На фундаментальном уровне скорость передачи информации (не путать со скоростью чтения и записи информации) зависит от частоты генератора передатчика (измеряемой в Гц) и от применяемого кода. Ни то, ни другое не связано ограничениями двоичной логики. При разработке стандартов скорости (и частоты) чаще всего подбирают так, чтобы передавалось целое число байт.

  • Максимальная скорость передачи информации во всех Ethernet стандартах: 10 Мбит/с = 10000000 бит/с; 100 Мбит/с = 100000000 бит/с; 1 Гбит/с = 1000000000 бит/с и т. д. При этом бодовая отличается в разных стандартах и зависит от способа кодирования.
  • Основной цифровой канал (ОЦК) имеет скорость 64 кбит/с = 64*1000 бит/с. На основе ОЦК построена вся плезиохронная цифровая иерархия . Например, скорость потока E1 (содержит 32 ОЦК) = 2,048 Мбит/с = 2048 кбит/с = 2048000 бит/с.
  • Скорость STM-1 равна 155,52 Мбит/с = 155520000 бит/с. На основе STM-1 построена вся синхронная цифровая иерархия .
  • Скорости старых модемов, написанные в спецификациях (и на коробках самих модемов), 56К, 33.6К, 28.8K, 14.4К и т. д. указаны с коэффициентом 1 K = 1000 бит.

В архитектуре компьютерных систем

В современном мире повсеместно используются компьютеры на двоичной логике, которая имеет свои ограничения. Существует минимально передаваемый (адресуемый) блок информации. В большинстве случаев это 1 байт. Компьютеры могут хранить (и адресовать) только объём информации, кратный 1 байту (см. Машинное слово). Объём данных принято измерять в байтах. Поэтому используется 1 КБ = 1024 байт. Это вызвано оптимизацией вычислений (в памяти и процессоре). От размера страниц памяти зависит всё остальное - размер блока I/O у файловых систем обычно кратен размеру страницы памяти, размер сектора на диске подбирается так, чтобы кратно укладываться в размер блока файловых систем.

Многие производители накопителей (за исключением компакт-дисков) указывают размер из расчёта 1 КБ = 1000 байт. Существует мнение, что это вызвано маркетинговыми причинами.

Стандарты

  • Международной электротехнической комиссией в марте 1999 года во второй поправке к IEC 60027-2 были введены в действие двоичные приставки «киби » (сокращенно Ки- , Ki- ), «меби » (сокращенно Ми- , Mi- ) и т. п. Однако не все придерживаются данных терминов.
  • ГОСТ 8.417-2002 , 1 сентября 2003 г. - «Единицы величин»
  • JEDEC 100B.01 en - стандарт для маркировки цифровой памяти по которому кило = 1024.
  • RFC 2330 , май 1998 - «Framework for IP Performance Metrics». Документ не является стандартом Интернета, но может быть использован в качестве справочного материала.

Практика

  • В оборудовании Cisco при выставлении скорости считается, что 1 кбит/с = 1000 бит/с.
  • С версии MAC OS X 10.6 Snow Leopard показывает в СИ-единицах.
  • В Windows для отображения хранимой информации используется 1 КБ = 1024 байт. [как трактуется скорость в «мониторе ресурсов»? ]
  • Многие сборки Linux, руководствуясь стандартами, используют 1 кбит = 1000 бит, 1 кибит = 1024 бит.
  • Возможно jфные скорости. Например, один провайдер может считать, что 1Мб = 1024 Кб, другой, что 1 Мб = 1000 Кб (несмотря на то, что в обоих случаях 1 Кб = 1000 бит) [ ] . Такое несоответствие не всегда является недоразумением, например, если на сети провайдера используются потоки , скорости всегда будут кратны 64. Некоторые люди и организации избегают неоднозначности, употребляя выражения «тысяча бит» вместо «килобит» и т. п.

Пример соответствия единиц при том и другом подходе приведены в таблице.

В сегодняшней статье мы займемся измерением информации. Все картинки, звуки и видео ролики, которые мы с вами видим на экранах мониторов, представляют собой не более чем цифры. И эти цифры можно измерить, и, сейчас, вы научитесь переводить мегабиты в мегабайты и мегабайты в гигабайты.

Если вам важно знать, сколько в 1 гб мб или сколько в 1 мб кб, то эта статья для вас. Чаще всего такие данные нужны программистам, оценивающим занимаемый их программами объем, но, иногда, не мешает и рядовым пользователям для оценки размера скачиваемых или хранимых данных.

Если вкратце, то достаточно знать это:

1 байт = 8 бит

1 килобайт = 1024 байта

1 мегабайт = 1024 килобайта

1 гигабайт = 1024 мегабайта

1 терабайт = 1024 гигабайта

Общепринятые сокращения: килобайт=кб, мегабайт=мб, гигабайт=гб.

Недавно я получил вопрос от моего читателя: «Что больше кб или мб?». Надеюсь, теперь, ответ на него знает каждый.

Единицы измерения информации в подробностях

В информационно мире применяется не привычная для нас, десятеричная система измерения, а двоичная. Это значит, что одна цифра может принимать значение не от 0 до 9, а от 0 до 1.

Простейшей единицей измерения информации является 1 бит, он может быть равен 0 или 1. Но эта величина очень мала для современного объема данных, поэтому используют биты редко. Чаще применяют байты, 1 байт равен 8 бит и может принимать значение от 0 до 15 (шестнадцатеричная система исчисления). Правда вместо чисел 10-15 применяются буквы от А до F.

Но и эти объемы данных невелики, поэтому применяются привычные всем приставки кило- (тысяча), мега-(миллион), гига-(миллиард).

Стоит отметить, что в инфомире, килобайт равен не 1000 байт, а 1024. И если вы хотите узнать, сколько килобайт в мегабайте, то вы тоже получите число 1024. На вопрос, сколько мегабайт в гигабайте вы услышите тот же ответ – 1024.

Определяется это также особенностью двоичной системы исчисления. Если, при использовании десятков, каждый новый разряд мы получаем умножением на 10 (1, 10, 100, 1000 и т.д.), то в двоичной системе новый разряд появляется после умножения на 2.

Это выглядит вот так:

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

Число, состоящее из 10 цифр двоичной системы, может иметь всего лишь 1024 значения. Это больше чем 1000, но ближе всего к привычной приставке кило-. Аналогичным образом применяются и мега- и гига и тера-.

09.08.2017, Ср, 08:18, Мск , Текст: Игорь Королев

«Мегафон» одним из первых в мире запустил в коммерческую эксплуатацию сеть Gigabit LTE. Абонентам оператора уже доступна скорость до 1 Гбит/с, правда, пока только на одной модели смартфона.

«Мегафон» разогнал мобильный интернет до 1 Гбит/c

Московский «Мегафон» запустив коммерческую эксплуатацию Gigabit LTE - сеть четвертого поколения сотовой связи стандарта LTE, относящейся к релизу Cat. 16. «Мегафон» стал первым оператором в России и одним из первых в Европе, запустившим данную технологию.

Замеры сети показали, что скорость передачи данных достигает отметки 979 Мбит/с. Для получения таких скоростей использовалась агрегация трех несущих частот. В диапазоне 2,5 ГГц было использовано два участка частот, в каждом из которых есть по две полосы частот шириной по 20 МГц каждая. Эти частоты используют технологию частотного разделения каналов (FDD).

В диапазоне 1800 МГц использовалась полоса частот шириной 20 МГц, эта полоса работает по технологии временного разделения каналов (TDD). Суммарно «Мегафон» задействовал спектр с эффективной шириной 60 МГц.

Сколько частот нужно для 1 Гбит/с

В базовом варианте для получения скорости 750 Мбит/с необходима полоса общий шириной 100 МГц. Использование модуляции 256 QAM позволяет получить скорость 1 Гбит/с на более узкой полосе - 100 МГц. Если же добавить еще одно решение - 4x4 MIMO (по четыре антенны на прием и передачи) - то потребность в спектре снижается до 60 МГц. Именно эти два дополнительных решения и применил «Мегафон».

«Мегафон» первым в России и одним из первых в мире запустил в коммерческую эксплуатацию сеть Gigabit LTE

В настоящее время Gigabit LTE поддерживает на нескольких десятках базовых станциях «Мегафона» в пределах Бульварного кольца и частично в пределах Садового кольца. То есть «Мегафон» провел модернизацию сети в районах наибольшего скопления абонентов.

Работа новой технологии обеспечена за счет решений от финской Nokia, выступающей поставщиком сетевого оборудования для московского «Мегафона» - радиомодуля Nokia Flexi Multradio, которым оборудовано большинство базовых станций «Мегафона» в Москве и области, и системного модуля Nokia AirScale.

Запущенная «Мегафоном» технология условно относится к поколению 4,5G Pro. В то же время модуль AirScale поддерживает и следующее поколение сотовой связи - 5G. Как заявил вице-президент Nokia по странам Восточной Европы Деметрио Руссо , прошедшая демонстрация стала еще одним шагом на пути к запуску 5G.

Кому будут доступны новые скорости

Возможности новой технологии уже доступны конечным пользователям. Gigabit LTE работает на одной модели смартфона, созданного на базе модема Qualcomm Snapdragon X16. В «Мегафоне» отмечают, что такая ситуация разительно отличается от запуска первых LTE-сетей в 2012 г., когда высокая скорость передачи данных была доступна только на смартфонах.

Вице-президент Qualcomm по развитию бизнеса в Восточной Европе Юлия Клебанова отметила, что технология Gigabit LTE дает новые возможности пользователям: просмотр видео в формате 4Kx4K HDR, облачные сервисы, мгновенный отклик мобильных приложении.

Как «Мегафон» тестировал высокие скорости

В 2014 г. московский «Мегафон» запустил в коммерческую эксплуатацию сеть LTE предыдущего релиза - cat. 6. Она обеспечивает скорость до 300 Мбит/с за счет агрегации двух участков частот в диапазоне 2,5 ГГц, в каждом из которых есть по две полосы частот шириной по 20 МГц каждая.

Gigabit LTE увеличивает спектральную эффективность, за счет повышается скорость доступа для всех пользователей независимо от используемого ими оборудования. Это связано с тем, что Gigabit LTE использует почти в пять раз меньше сетевых ресурсов для передачи видео, чем обычные сети LTE, подчеркнула Клебанова.

В 2015 г. московский «Мегафон» совместно с Ericsson тестировал более поздний вариант LTE - cat. 9. Там к вышеупомянутым полосам частот добавилась полоса шириной 20 МГц в диапазоне 1800 МГц. В ходе тестов скорость передачи данных 450 Мбит/с, но тогда речи о коммерческой эксплуатации не шло.

В 2016 г. в ходе Петербургского экономического форума «Мегафон» уже возможности передачи данных по сети LTE со скоростью до 1 Гбит/с, однако тогда речь шла просто о тесте.

У «Мегафона» наибольшие среди всех операторов возможности по агрегации LTE-частот, так как в 2012-2013 г.г. компания поглотила оператора «Скартел» (бренд Yota). В результате к блоку шириной 20 МГц, которой есть в диапазоне 2,5 ГГц у каждого из операторов «большой четверки» («Мегафона», «Вымпелкома», МТС и Tele2) , «Мегафон» получил дополнительно еще 60 МГц в данном диапазоне.

«Билайн» не спешит с гигабитным интернетом

Со своей стороны, представители конкурента «Мегафона» - «Вымпелкома» (торговая марка «Билайн») - заявили, что также проводят аналогичные тесты и намерены проводить их в дальнейшем. «Но в имплиментации подобных технологий в коммерческое использование исходим из того, чтобы была возможность предложить своевременно клиентам продукт, который они реально смогут использовать под тот объем приложений и услуг, где такие скорости реально будут востребованы», - заявила представитель «Вымпелкома» Анна Айбашева .

Если на рынке коммутаторов Ethernet и происходит что-то интересное, то это касается преимущественно (или исключительно) решений для центров обработки данных. Переход на более высокие скорости, изменения в архитектуре сети, программируемые сети и коммутаторы без ОС - все эти технологические и технические новшества оказываются востребованы прежде всего в ЦОДе, а до офисных сетей порой и вовсе не добираются. Тем не менее с появлением беспроводных точек доступа 802.11ac возникла необходимость в поддержке скоростей свыше 1 Гбит/с в обычных офисных сетях, а с ней - и потребность в новых, специфичных только для этой ниши скоростях 2,5 и 5 Гбит/с.

10G В ОФИСЕ: И ДАРОМ НЕ НАДО?

Если в облачных центрах обработки данных наряду с 10 Gibabit Ethernet главным драйвером роста спроса на коммутаторы становится потребность в поддержке 40 Gigabit Ethernet, то в корпоративных сетях по-прежнему основное количество подключений приходится на гигабитные соединения (см. рис. 1). Что говорить об обычных офисах, если даже в корпоративных ЦОДах, по данным Broadcom, доля гигабитных портов в серверах и коммутаторах в стойках (ToR) составляет 60%, несмотря на то что оборудование 10GbE доступно на рынке уже 10 лет. В чем же причина?

Если исходить из соотношения цена/производительность, то оборудование 10 Gigabit Ethernet окажется дешевле - условный 1 Гбит/с пропускной способности обойдется в меньшую сумму. Однако если уж в серверах большинство портов гигабитные, то для рабочих станций, а тем более для ПК, столь высокие скорости, как 10 Гбит/с, попросту не нужны. Для многих конечных точек вполне достаточно 100 Мбит/с, и тем не менее они оснащаются платами на 1 Гбит/с. В немалой степени массовому переходу на Gigabit Ethernet способствовал тот факт, что для поддержки таких скоростей не надо было менять уже проложенную проводку - а это не только весьма значительная статья расходов, но и определенные неудобства.

Коммутаторы с портами 10GBase-T для сегмента малых и средних предприятий имеются у целого ряда производителей. Так, например, Netgear предлагает соответствующее оборудование еще с 2013 года, но позиционирует его в первую очередь для подключения серверов и сетевых систем хранения (NAS), а не рабочих станций и персональных компьютеров. «В нашей продуктовой линейке уже сейчас много продуктов с поддержкой скорости передачи данных выше 1 Гбит/с, - отмечает Яков Юницкий, директор по операциям в компании «Тайле». - Их основное предназначение - создание решений для магистральных каналов Ethernet, подключения систем хранения данных и высокопроизводительных серверов».

Между тем именно поддержка той или иной технологии в конечных устройствах способна обеспечить массовость рынка. Однако пока таких задач, где оказались бы востребованы скорости 10 Гбит/с на уровне пользователя, не просматривается. «Предпосылками к массовому переходу офисных сетей на такие скорости должны прежде всего стать приложения с высокими требованиями к пропускной способности, - продолжает Яков Юницкий. - Несмотря на то что многие компании давно перешли на IP-телефонию, используют оборудование для видеоконференций и IP-видеонаблюдения, до потолка производительности сетей 1 Гбит/с, а местами и 100 Mбит/c, еще далеко».

Как показал наш небольшой опрос, проведенный среди производителей и поставщиков оборудования, в сегменте SMB массового спроса на решения 10GbE не наблюдается и, более того, не ожидается. «Маловероятно, что в ближайшие пару лет произойдет повсеместный перевод офисных сетей на скорости доступа выше 1 Гбит/с», - полагает Андрей Ковязин, начальник отдела сетевых решений в «Компании КОМПЛИТ». Однако наличие подобного оборудования в линейке таких производителей, как D-Link (см. рис. 2), Netgear, ZyXEL и др., свидетельствует о том, что спрос на него есть - во всяком случае потенциальная ниша достаточно широ-ка, чтобы привлечь внимание этих вендоров.

«Мы ожидаем, что в 2015–2016 годах рост продаж сетевого оборудования с оптическими и медными портами 10G офисному сегменту и предприятиям малого и среднего бизнеса будет многократным, в том числе за счет появления в продуктовой линейке новых бюджетных серий», - отмечает Денис Давыдов, руководитель отдела проектов D-Link. В компании уверены, что дальнейшее увеличение объемов информации приведет к проникновению технологий 10G в сети любых размеров, в том числе принадлежащие предприятиям SMB, где активно внедряются решения и системы хранения данных и виртуализации, а также облачные технологии.

Согласно оценке Broadcom, в ближайшие три года можно ожидать широкого внедрения серверов и коммутаторов с поддержкой 10GbE в корпоративных сетях, и в результате к 2018 году доля соответствующего оборудования увеличится с нынешних 35 до 63% (см. рис. 3).

10G МНОГО, 1G МАЛО

Дорогостоящие проводка, соединители и микросхемы ограничивают применение 10GbE приложениями с высокими требованиями к ресурсам - такими, например, как мощные виртуализированные серверы с множеством ВМ. Однако в офисных сетях есть задачи, где скорости 1 Гбит/с оказывается уже недостаточно, а 10 Гбит/с пока слишком много. Это подключение к проводной сети беспроводных точек доступа стандарта 802.11ас Wave 2.

Если собственные серверы виртуализации нужны далеко не каждому малому предприятию, к тому же соответствующие ресурсы можно взять из облака, то отсутствие беспроводного доступа для клиентов способно негативно повлиять на конкурентоспособность предприятия из сферы обслуживания, да и точка доступа должна физически находиться в офисе. Как показал опрос Bredin представителей малого бизнеса (число сотрудников от 1 до 10 человек), посетители предпочитают бесплатный Wi-Fi чаю и кофе с конфетами. В отчете отмечается, что если Wi-Fi плохого качества или отсутствует, то восприятие клиентом компании становится отрицательным. Для удовлетворения таких потребностей обычно вполне достаточно точки доступа 802.11n или даже более ранних стандартов, однако более крупным предприятиям и помещениям, где посетителей всегда много, возможностей 802.11n не всегда хватает. Кроме того, для поддержки следующего беспроводного стандарта IEEE 802.3ad в диапазоне 60 ГГц потребуется подключение со скоростью 5 Гбит/с (для TCP).

Появившиеся на рынке ТД 802.11ac Wave 2 пока поддерживают не более четырех пространственных потоков, поэтому для их подключения вполне достаточно двух линий по 1 Гбит/с. Так, например, точка доступа ZoneFlex R710 Wave 2 AP разработки Ruckus Wireless оснащена двумя гигабитными портами, то есть с переходом на более скоростные подключения можно повременить. Однако с появлением ТД, способных поддерживать восемь пространственных потоков, 2х1 Гбит/с может оказаться недостаточно. Для таких ТД потребуется либо подводить дополнительные кабели, либо переходить на 10GbE и, соответственно, на проводку Категории 6А. Чтобы этого избежать, IEEE спешно разрабатывает стандарты Ethernet на 2,5 и 5 Гбит/с. «Их преимущество проявляется в работе по широко распространенным существующим СКС Категорий 5e и 6 на скорости до 5 Гбит/с, что избавляет от необходимости полностью переделывать кабельную систему для беспроводного доступа нового поколения» - отмечает Андрей Ковязин.

Разработкой соответствующих технологий и оборудования занимаются два альянса: NBase-T и MGBase-T (см. подробнее статью автора «Замедление Ethernet» в февральском номере «Журнала сетевых решений/LAN» за 2015 год). Потенциально наличие двух конкурирующих сторон могло затормозить принятие стандарта, как это случилось с 802.11n, на одобрение которого ушло семь лет. Однако, к счастью, на последнем заседании рабочей группы IEEE, собиравшейся в мае текущего года, удалось достигнуть общего согласия по базовой технологии для Ethernet на 2,5 и 5 Гбит/с. Как отметил Дэвид Чалупски, председатель рабочей группы IEEE P802.3bz, «достижение консенсуса позволило немедленно перейти к следующей фазе проекта - составлению чернового варианта спецификации».

Таким образом, было сэкономлено несколько месяцев. Однако работа над стандартом далека от завершения - его подготовка займет еще полтора-два года. К тому времени должно получить широкое распространение беспроводное оборудование 802.11ac Wave 2. Как предполагается, скорость 2,5 Гбит/с будет поддерживаться кабельной проводкой Категории 5е, а 5 Гбит/с - Категории 6. Между тем на рынке уже появляются коммутаторы с поддержкой мультигигабитных скоростей. В первом полугодии этого года соответствующие модули для своих коммутаторов выпустили HP и Cisco. Впрочем, та же Cisco свои точки доступа пока предпочитает оснащать не мультигигабитными портами, а двумя обычными Gigabit Ethernet (см. рис. 4).

Как надеются аналитики, появление новых скоростей Ethernet послужит толчком к модернизации офисных сетей. «Для кампусных коммутаторов настало время модернизации, - считают в Dell’Oro. - Доступность точек доступа 802.11ac Wave 2 корпоративного класса порождает спрос на коммутаторы нового типа». Многогигабитные коммутаторы стоят дороже, чем традиционные с портами 1 Гбит/с, однако они позволяют использовать уже проложенную проводку, что является существенным аргументом в их пользу. «Первые поставки портов 2.5/5.0 GbE стартовали в начале июня, - сообщает Крис Де Пьюи, вице-президент Dell’Oro Group по выпуску оборудования для корпоративного сегмента. - В третьем квартале, с появлением новых предложений, мы ожидаем значительного роста продаж. Уже сейчас можно говорить о формировании совершенно нового сегмента рынка Ethernet». По прогнозам Dell’Oro, уже за первый год будет продано свыше миллиона мультигигабитных портов.

КАКАЯ ПРОВОДКА НУЖНА?

Какой должна быть кабельная инфраструктура для поддержки беспроводного доступа? Требования к такой проводке изложены в TIA TSB-162, где рекомендуется инсталляция кабельной системы Категории 6А или многомодовой оптики с волокнами OM3 (см. подробнее статью Степана Большакова и Романа Китаева «Инфраструктурное обеспечение беспроводных решений нового поколения» в апрельском номере «Журнала сетевых решений/LAN» за 2015 год). Однако эти рекомендации составлялись, когда 2,5- и 5-гигабитного Ethernet не было даже в проекте. Впрочем, для новых инсталляций они остаются справедливы и сейчас, позволяя не беспокоиться о необходимости модернизации долгие годы: те, кто 20 лет назад не поскупился на установку только что появившихся систем Категории 5е, могут по-прежнему пользоваться своей проводкой, если только не исчерпался ее физический ресурс. До морального же устаревания пока далеко, к тому же теперь такая проводка способна поддерживать не только гигабитные, но и 2,5-гигабитные скорости.

Ожидаемое появление стандарта на 2,5 и 5 Гбит/с дало долгожданное приложение для кабельных систем Категории 6: если раньше, по сути, единственным аргументом в пользу ее установки был запас по характеристикам, то теперь он наконец-то пригодился - таким приложением может стать 5GBase-T. «О возросших требованиях рынка к поддерживаемым скоростям и пропускной способности мы, как поставщик кабельных решений, можем судить на основании увеличенного спроса на компоненты и системы СКС различных категорий, - говорит Дарюш Заенц, директор представительства RiT Technologies в России. - Объемы продаж компонентов Категории 6 значительно увеличились по сравнению с продажами компонентов Категории 5е».

Ответить на вопрос о выборе проводки достаточно непросто. Усилия IEEE направлены на то, чтобы подключение высокоскоростных точек доступа осуществлялось на базе уже проложенной проводки. Однако до сих пор неясно, будет ли обеспечена поддержка 5 Гбит/с по Категории 5е (а на нее все еще приходится большинство инсталлированных кабельных систем - см. рис. 5). Судя по последней информации из IEEE, рабочая группа все же решила ограничиться 2,5 Гбит/с. Вместе с тем Cisco, например, заявляет о поддержке 5 Гбит/с по проводке Категории 5е на расстоянии до 100 м.

Скорости 2,5 Гбит/с в принципе достаточно для подключения уже появившихся на рынке продуктов 802.11ac Wave 2 с поддержкой до четырех пространственных потоков. Если же заказчик хочет в перспективе использовать точки доступа с поддержкой восьми пространственных потоков, то ему придется либо переходить на Категорию 6 (если у него установлена Категория 5е), либо надеяться на нестандартное оборудование (в случае отсутствия спецификаций на 5Base-T для Категории 5е). (Строго говоря, не исключается и третий вариант - объединение двух соединений по 2,5 Гбит/с, при условии поддержки этой возможности оборудованием.)

Пропускной способности 5 Гбит/с, то есть Категории 6 в худшем случае, будет вполне достаточно для любого оборудования 802.11ac. Теоретическая максимальная пропускная способность для этого стандарта составляет 6,9 Гбит/с, но речь идет о скорости передачи битов на физическом уровне. Пропускная же способность на MAC-уровне существенно меньше - 4,49 Гбит/с (см. таблицу). Эффективность проводного Ethernet намного лучше, чем беспроводного, - например, для 10GbE при передаче кадров размером 1518 она составляет приблизительно 94% (для пользовательских данных). Иначе говоря, беспроводной поток 6,9 Гбит/с поместится в проводной канал 5 Гбит/с.